

 One and Done

 v0.1.5

 Table of contents

 	One and Done

 	Modules

 	OneAndDone

 	OneAndDone.Cache

 	OneAndDone.Parser

 	OneAndDone.Plug

 	OneAndDone.Request

 	OneAndDone.Response

 	OneAndDone.Telemetry

 	OneAndDone.Telemetry.SpanResult

 	OneAndDone.Errors.CacheMissingError

 	OneAndDone.Errors.InvalidMaxKeyLengthError

 	OneAndDone.Errors.PlugUnfetchedBodyError

One and Done

One and Done is the easiest way to make HTTP requests idempotent in Elixir applications.
One and Done supports the following frameworks:
	Plug (including Phoenix)

Usage
One and Done depends on having a pre-existing cache like Nebulex. This guide assumes Nebulex is already configured under MyApp.Cache.
	Add one_and_done to your mix.exs dependencies:

def deps do
 [
 {:one_and_done, "~> 0.1.5"}
]
end
	Add OneAndDone to your Plug pipeline:

defmodule MyAppWeb.Router do
 use MyAppWeb, :router

 pipeline :api do
 # Configuration options for OneAndDone are in the docs
 plug OneAndDone.Plug, cache: MyApp.Cache
 end

 # By default, all POST and PUT requests piped through :api
 # that have an Idempotency-Key header set will be cached for 24 hours.
 scope "/api", MyAppWeb do
 pipe_through :api

 resources "/users", UserController
 end
end
	Make your requests idempotent by adding the Idempotency-Key header:

curl -X POST \
 http://localhost:4000/api/users \
 -H 'Content-Type: application/json' \
 -H 'Idempotency-Key: 123' \
 -d '{
 "email": "hello@example.com",
 "password": "password"
 }'

Repeat the request with the same Idempotency-Key header and you will get the same response
without the request being processed again.

OneAndDone

 OneAndDone makes it easy to introduce idempotency in any Elixir application.
 Its only dependency is a cache to store requests in (Nebulex works great).
 Usage is framework-dependent. Currently, OneAndDone supports the following frameworks:
	OneAndDone.Plug

 Other frameworks are welcome too!
 For details on integrating OneAndDone with your framework, look at the docs for the
 module you would use in your framework.

OneAndDone.Cache behaviour

Defines the most basic cache interface.
This module is used as a reference for Cache implementations. Although not used by
OneAndDone, Cache implementations should be compliant with this module.
This module is compliant with Nebulex.Cache. If you use Nebulex, you
are already compliant with this module.

 Anchor for this section

 Summary

 Callbacks

 get(key)

 Retreive a value from the cache.

 put(key, value, opts)

 Store a value in the cache under the given key.

 Anchor for this section

Callbacks

 Link to this callback

 get(key)

 View Source

 @callback get(key :: any()) :: any() | nil

Retreive a value from the cache.

 Link to this callback

 put(key, value, opts)

 View Source

 @callback put(key :: any(), value :: any(), opts :: [{:ttl, pos_integer()}]) :: :ok

Store a value in the cache under the given key.
Opts must include a TTL, given in milliseconds.

OneAndDone.Parser protocol

Protocol for turning an inbound connection (e.g. a Plug.Conn) into a
OneAndDone.Request or a OneAndDone.Response.

 Anchor for this section

 Summary

 Types

 t()

 Functions

 build_request(value)

 build_response(value)

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: term()

 Anchor for this section

Functions

 Link to this function

 build_request(value)

 View Source

 @spec build_request(t()) :: OneAndDone.Request.t()

 Link to this function

 build_response(value)

 View Source

 @spec build_response(t()) :: OneAndDone.Response.t()

OneAndDone.Plug

Easy to use plug for idempoent requests.
Getting started
	Add :one_and_done to your list of dependencies in mix.exs:
 def deps do
 [
 {:one_and_done, "~> 0.1.5"}
]
 end

	Add the plug to your router:
 pipeline :api do
 plug OneAndDone.Plug,
 # Required: must conform to OneAndDone.Cache (Nebulex.Cache works fine)
 cache: MyApp.Cache,

 # Optional: How long to keep entries, defaults to 86_400 (24 hours)
 ttl: 86_400,

 # Optional: Function reference to generate an idempotence TTL per request.
 # Takes the current `Plug.Conn` as the first argument and the current
 # `idempotency_key` as the second.
 #
 # When provided, this function is called before falling back to the
 # `ttl` option.
 #
 # Defaults to `nil`.
 build_ttl_fn: &OneAndDone.Plug.build_ttl/2,

 # Optional: Which methods to cache, defaults to ["POST", "PUT"]
 # Used by the default idempotency_key_fn to quickly determine if the request
 # can be cached. If you override idempotency_key_fn, consider checking the
 # request method in your implementation for better performance.
 # `supported_methods` is available in the opts passed to the idempotency_key_fn.
 supported_methods: ["POST", "PUT"],

 # Optional: Which response headers to ignore when caching, defaults to ["x-request-id"]
 # When returning a cached response, some headers should not be modified by the contents of the cache.
 #
 # Instead, the ignored headers are returned with the prefix `original-`.
 #
 # By default, the `x-request-id` header is not modified. This means that each request will have a
 # unique `x-request-id` header, even if a cached response is returned for a request. The original request
 # ID is still available under `original-x-request-id`.
 #
 # If you are using a framework that sets a different header for request IDs, you can add it to this list.
 ignored_response_headers: ["x-request-id"],

 # Optional: Function reference to generate the idempotency key for a given request.
 # By default, uses the value of the `Idempotency-Key` header.
 # Must return a binary or nil. If nil is returned, the request will not be cached.
 # Default function implementation:
 #
 # fn conn, opts -> # Opts is the same as the opts passed to the plug
 # if Enum.any?(opts.supported_methods, &(&1 == conn.method)) do
 # conn
 # |> Plug.Conn.get_req_header("idempotency-key") # Request headers are always downcased
 # |> List.first()
 # else
 # nil
 # end
 # end
 idempotency_key_fn: &OneAndDone.Plug.idempotency_key_from_conn/2,

 # Optional: Function reference to generate the cache key for a given request.
 # Given the conn & idempotency key (returned from idempotency_key_fn), this function
 # should return a term that will be used as the cache key.
 # By default, it returns a tuple of the module name and the idempotency key.
 # Default function implementation: fn _conn, idempotency_key -> {__MODULE__, idempotency_key}
 cache_key_fn: &OneAndDone.Plug.build_cache_key/2

 # Optional: Flag to enable request match checking. Defaults to true.
 # If true, the function given in check_requests_match_fn will be called to determine if the
 # original request matches the current request.
 # If false, no such check shall be performed.
 request_matching_checks_enabled: true,

 # Optional: Function reference to determine if the original request matches the current request.
 # Given the current connection and a hash of the original request, this function should return
 # true if the current request matches the original request.
 # By default, uses `:erlang.phash2/2` to generate a hash of the current request. If the `hashes`
 # do not match, the request is not idempotent and One and Done will return a 400 response.
 # To disable this check, use `fn _conn, _original_request_hash -> true end`
 # Default function implementation:
 #
 # fn conn, original_request_hash ->
 # request_hash =
 # Parser.build_request(conn)
 # |> Request.hash()
 #
 # cached_response.request_hash == request_hash
 # end
 check_requests_match_fn: &OneAndDone.Plug.matching_request?/2,

 # Optional: Max length of each idempotency key. Defaults to 255 characters.
 # If the idempotency key is longer than this, we respond with error 400.
 # Set to 0 to disable this check.
 max_key_length: 255
 end

That's it! POST and PUT requests will now be cached by default for 24 hours.
Response headers
By default, the "x-request-id" header is not modified. This means that each request will have a
unique "x-request-id" header, even if a cached response is returned for a request.
By default, the "original-x-request-id" header is set to the value of the "x-request-id" header
from the original request. This is useful for tracing the original request that was cached.
One and Done sets the "idempotent-replayed" header to "true" if a cached response is returned.
Telemetry
To monitor the performance of the OneAndDone plug, you can hook into OneAndDone.Telemetry.
For a complete list of events, see OneAndDone.Telemetry.events/0.
Example
In your application.ex
...
:telemetry.attach_many(
 "one-and-done",
 OneAndDone.Telemetry.events(),
 &MyApp.Telemetry.handle_event/4,
 nil
)
...

In your telemetry module:
defmodule MyApp.Telemetry do
 require Logger

 def handle_event([:one_and_done, :request, :stop], measurements, _metadata, _config) do
 duration = System.convert_time_unit(measurements.duration, :native, :millisecond)

 Logger.info("Running one_and_done took #{duration}ms")

 :ok
 end

 # Catch-all for unhandled events
 def handle_event(_, _, _, _) do
 :ok
 end
end

 Anchor for this section

 Summary

 Functions

 matching_request?(conn, cached_response)

 Anchor for this section

Functions

 Link to this function

 matching_request?(conn, cached_response)

 View Source

OneAndDone.Request

Capture the request information that we want to cache.
Headers are not included in the cache key because they can change
from request to request and should not influence the substance of
the request being made to a controller.
Generally we do not cache this Request struct, but we do cache the
hash of the struct so that we can compare subsequent requests to
the original request. If the hashes don't match, we return an error.
If the hashes do match, then we can continue processing.

 Anchor for this section

 Summary

 Types

 t()

 Functions

 hash(request)

 Hashes the request struct.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %OneAndDone.Request{
 body: binary(),
 host: binary(),
 method: binary(),
 path: binary(),
 port: non_neg_integer(),
 query_string: binary(),
 scheme: binary()
}

 Anchor for this section

Functions

 Link to this function

 hash(request)

 View Source

 @spec hash(t()) :: non_neg_integer()

Hashes the request struct.

OneAndDone.Response

A basic module for capturing the essence of a response.
Also captures a hash of the request that generated the response. This is used
to determine if two requests sharing the same idempotency key are the same
to prevent accidental misuse of the idempotency key.
Response structs are stored in the cache so that idempotent requests can be
quickly returned.
See OneAndDone.Response.Parser for turning an inbound connection (e.g. a Plug.Conn)
into a OneAndDone.Response.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %OneAndDone.Response{
 body: iodata(),
 cookies: %{optional(binary()) => map()},
 headers: [{binary(), binary()}],
 request_hash: non_neg_integer(),
 status: non_neg_integer()
}

OneAndDone.Telemetry

Telemetry integration to track how long it takes to process a request.
OneAndDone emits the following metrics:
	Metric	Description	Measurements	Metadata
	[:one_and_done, :request, :start]	When we begin processing a request.		conn, opts
	[:one_and_done, :request, :stop]	When we finish processing a request, including the duration in native units.	duration	conn, opts
	[:one_and_done, :request, :exception]	When we finish processing a request, if an exception was raised. Includes the duration in native units.	duration, exception	conn, opts
	[:one_and_done, :request, :cache_hit]	Given an idempotency key, we found a cached response.	idempotency_key	conn, response
	[:one_and_done, :request, :cache_miss]	Given an idempotency key, we didn't find a cached response.	idempotency_key	conn
	[:one_and_done, :request, :idempotency_key_not_set]	The request doesn't have an idempotency key and will not be processed further by OneAndDone.		conn
	[:one_and_done, :request, :idempotency_key_too_long]	The idempotency key is too long. A 400 error was returned to the client.	key_length, key_length_limit	conn
	[:one_and_done, :request, :cache_get, :start]	When we begin checking the cache for a request.		conn, idempotency_key
	[:one_and_done, :request, :cache_get, :stop]	When we finish checking the cache for a request, including the duration in native units.	duration	conn, idempotency_key
	[:one_and_done, :request, :cache_get, :exception]	When we finish checking the cache for a request, if an exception was raised. Includes the duration in native units.	duration, exception	conn, idempotency_key
	[:one_and_done, :request, :cache_put, :start]	When we begin serializing and putting a response into the cache.		conn, idempotency_key
	[:one_and_done, :request, :cache_put, :stop]	When we finish serializing and putting a response into the cache, including the duration in native units.	duration	conn, idempotency_key
	[:one_and_done, :request, :cache_put, :exception]	When we finish serializing and putting a response into the cache, if an exception was raised. Includes the duration in native units.	duration, exception	conn, idempotency_key

The duration is emitted in native units. To convert to milliseconds, use System.convert_time_unit(duration, :native, :millisecond).

 Anchor for this section

 Summary

 Functions

 event(base_name, metrics, meta \\ %{})

 Emit a telemetry event.

 events()

 Return the list of events emitted by this module.

 span(base_name, meta \\ %{}, fun)

 Measure the duration of a function call.

 Anchor for this section

Functions

 Link to this function

 event(base_name, metrics, meta \\ %{})

 View Source

 @spec event(atom() | [atom()], map(), map()) :: :ok

Emit a telemetry event.

 Link to this function

 events()

 View Source

 @spec events() :: list()

Return the list of events emitted by this module.

 Link to this function

 span(base_name, meta \\ %{}, fun)

 View Source

 @spec span(atom() | [atom()], map(), (... -> any())) :: any()

Measure the duration of a function call.

OneAndDone.Telemetry.SpanResult

Additional metadata to include at the end of a span.

 Anchor for this section

 Summary

 Types

 t()

 Functions

 new(result)

 Create a new SpanResult struct.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %OneAndDone.Telemetry.SpanResult{
 result: any(),
 status: :success | :error
}

 Anchor for this section

Functions

 Link to this function

 new(result)

 View Source

 @spec new(any()) :: t()

Create a new SpanResult struct.

OneAndDone.Errors.CacheMissingError exception

Raised when a cache is not configured. Check the docs for the OneAndDone module
you are using (e.g. OneAndDone.Plug) for details on how to configure a cache.

OneAndDone.Errors.InvalidMaxKeyLengthError exception

Raised when the configured cache key is not an integer greater than or equal to 0.

OneAndDone.Errors.PlugUnfetchedBodyError exception

Raised when a request's body has not been fetched.
We compare each request body to the original request body to ensure that
the request body has not been modified. If the body has not been fetched,
we cannot compare it to the original request body, so we raise this error.

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

